آرتینی و غیرآرتینی بودن مدول های کوهمولوژی موضعی
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده علوم ریاضی
- author منیره صبوری اصل
- adviser رضا نقی پور حسن مهتدیفر
- Number of pages: First 15 pages
- publication year 1390
abstract
فرض کنید m یک مدول متناهی مولد روی حلقه نوتری، جابجایی و یکدارr باشد. اگرr موضعی باشد، نشان داده می شود که m کوهن- مکالی تعمیم یافته است، هرگاه یک ایده الa موجود باشد، به طوریکه همه مدول های کوهمولوژی موضعیm ، نسبت به a با طول متناهی باشند. همچنین نشان داده می شود که اگرr یک عدد صحیحی باشد، به طوریکه(m) ??dim?_r 0?rآنگاه هر عضو ماکسیمال مجموعه غیر تهی {a:? نیست آرتینی h?_a^(i ) (m) طوریکه به باشد داشته وجود i?r} از ایده ال های r ، یک ایده ال اول است و برای هر i?r همه اعداد باس h_q^i (m) متناهی هستند.
similar resources
اصل موضعی-فراموضعی برای آرتینی بودن مدول های کوهمولوژی موضعی
فرض کنید r یک حلقه جابجایی و نوتری، i یک ایده آل سره از r و m یک r-مدول متناهی مولد باشد. مدول i-امین کوهمولوژی m نسبت به ایده آل i را با hii(m) نشان می دهیم. در این پایان نامه نشان داده می شود که یک اصل موضعی-فراموضعی برای مدول کوهمولوژی موضعی hii(m) وجود دارد که به قرار زیر است. برای هر عدد صحیح و مثبت مانند n ، hii(m) برای تمام iهایی که i < n آرتینی است اگر و تنها اگر برای تمام iهایی که i...
اصل موضعی - کلی برای آرتینی بودن مدول های کوهمولوژی موضعی
در این پایان نامه i یک ایده آل از r و m یک r-مدول است. هدف، اثبات قضایای زیر است: 1)فرض کنیم r حلقه موضعی و p ایده آل اول از r و n>=0 یک عدد صحیح باشد. ثابت می کنیم hii(m) برای هرi<n،آرتینی است اگر و فقط اگر hii(m))p برای هر i<n آرتینی باشد. 2) f-عمق i نسبت به m کوچکترین عدد صحیح مانند r است که مدول کوهمولوژی موضعی ( hri(m برای هر i<n آرتینی باشد. 3)یک اثبات ساده برای i-هم متناهی بودن...
ویژگی های متناهی بودن و آرتینی بودن مدول های کوهمولوژی موضعی صوری
فرض کنید i یک ایده آل از حلقه جابجایی موضعی نوتری (r,m)، m یک r-مدول متناهی مولد و برای عدد نامنفی i، (f_i^i(m نشان دهنده i-امین مدول کوهمولوژی موضعی صوری m نسبت به ایده آل i باشد . در این پایان نامه بعضی نتایج مربوط به ویژگی های متناهی بودن و آرتینی بودن مدول های کوهمولوژی موضعی صوری را ثابت می کنیم; که نشان می دهد این مدول ها شبیه مدول های کوهمولوژی موضعی رفتار می کنند . به علاوه ثابت می کنی...
هم متناهی بودن مدول های کوهمولوژی موضعی
در این رساله به بحث روی مدول های کوهمولوژی میپردازیم .و نشان میدهیم که تحت شرایط خاص ایدهال های اول وابسته i-امین مدول کوهمولوژی متناهی است
15 صفحه اولهم متناهی بودن مدول های کوهمولوژی موضعی
فرض کنیم r حلقه ای نوتری و m یک r ـ مدول غیر صفر مولد متناهی باشد. همچنین فرض کنیم i ایده آلی از r و t یک عدد صحیح نامنفی باشد. در این پایان نامه ثابت می شود هرگاه r ـ مدول های (h_i^{t-1} (m) , . . . ,h_i^0 (m مینیماکس باشند آنگاه به ازای هر زیرمدول مینیماکس (h_i^t (m نظیر r ،n ـ مدول (hom_r((r/i,h_i^t (m)/ n مولد متناهی بوده و در نتیجه مجموعه ایده آل های اول وابسته h_i^t (m )/n متناهی است. در ...
15 صفحه اولایده آلهای اول وابسته به بعضی ext- مدول ها و آرتینی بودن کوهمولوژی موضعی تعمیم یافته
فرض کنیم r حلقه ای نوتری و جابه جایی و m، r- مدولی با تولید متناهی باشد ابتدا با استفاده از ویژگی های m- رشته مطلق با بعد بزرگتر از s، درباره متناهی بودن مجموعه بحث می کنیم. سپس با اضافه کردن شرط موضعی به حلقه r ، نشان می دهیم برابر کمترین مقدار عدد صحیح r است به طوری که مدول کوهمولوژی موضعی تعمیم یافته آرتینی نباشد. در خاتمه با در نظر گرفتن عدد صحیح برای هر درباره آرتینین بودن بحث می کنیم.
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده علوم ریاضی
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023